n or N
|
number of observations
|
D
|
number of variables
|
d
|
index of the variables in [1,…,D]
|
K
|
number of classes
|
k
|
index of the classes in [1,…,K]
|
T
|
training set space
|
X
|
space of variables
|
X
|
random variable from X
|
x
|
realization of X
|
X
|
matrix of variables in Rn×D
|
\boldsymbol{x}_i
|
column vector of the i^{th} observation
|
x_{id}
|
scalar of the i^{th} observation and the d^{th} variable of \mathbf{X}
|
\mathcal{Y}
|
space of response
|
\mathrm{Y}
|
random variable from \mathcal{Y}
|
y
|
realization of \mathrm{Y}
|
\mathbf{y}
|
observed response vector in \mathbb{R}^n
|
y_i
|
scalar of the i^{th} observation of \mathbf{y}
|
\eta_i
|
linear predictor of i^{th} observation
|
f : X \rightarrow Y
|
some fixed but unknown function of \mathbf{X}
|
s(x)
|
smooth monotonic function of x
|
||.||_1
|
\ell_1 norm
|
||.||_2^2
|
\ell_2 squared norm
|
\xi
|
knot
|
K_d
|
number of knots of variable d
|
\mathrm{B}(x)
|
B-spline basis functions of x
|
m
|
polynomial order
|
\mathbf{B}
|
B-spline basis function matrix in \mathbb{R}^{n \times (k + m +1)}
|
N(x)
|
natural spline basis functions of x
|
\mathbf{N}
|
natural splines basis function matrix in \mathbb{R}^{n \times n}
|
\mathbf{W}
|
penalty matrix of natural splines in \mathbb{R}^{n \times n}
|
\Omega
|
training set to classify
|
S
|
number of levels in the hierarchical tree of \Omega
|
s
|
index of the levels of the hierarchy in [1, \dots, S]
|
h_s
|
height of the s^{th} level of the hierarchy
|
\mathcal{G}
|
group partition of all S levels of the hierarchy
|
G_s
|
number of groups at s^{th} level of the hierarchy
|
\hat{G}_s^*
|
optimal number of groups
|
g
|
index of number of groups in [1, \dots, G_s]
|
\mathcal{G}^s
|
a partition of \Omega at the s^{th} level
|
\mathcal{G}^s_g
|
g^{th} group of variables at the s^{th} level
|
\rho_s
|
weights attributed to group partition \mathcal{G}^s
|
\tilde{\mathbf{X}}^{(s)}
|
matrix of supervariables at s^{th} level of the hierarchy
|
\tilde{\mathbf{X}}^{(s)}_{\mathcal{G}^s}
|
matrix of supervariables for partition \mathcal{G}^s
|
\mathbf{X}_{\mathcal{G}}
|
variables matrix of concatenated group partition
|
\mathbf{X}^s_{\mathcal{G}^s}
|
variables matrix of group partition \mathcal{G}^s
|
\mathit{G}
|
genomic view
|
\mathbf{G}
|
matrix of genotype data
|
\mathbf{Z}
|
matrix of additively coded SNPs
|
\mathit{M}
|
metagenomic view
|
\mathbf{M}
|
matrix of metagenomic data
|
\mathcal{M}
|
group structure of metagenomic data
|
\boldsymbol{\Delta}_{\mathit{G}\mathit{M}}
|
matrix of interaction terms between genome and metagenome data
|